Abstract

A full-duplex radio-over-fiber system based on a modified single-sideband using external modulator is proposed and demonstrated. At the central station, a CW lightwave is intensity-modulated by a RF signal to generate a DSB signal. After the central carrier and the two first-order sidebands are separated by a FBG, the central carrier is modulated with a baseband data at 2.5 Gbit/s. Then, it is recombined with the un-modulated first-order sidebands to generate optical millimeter-wave by an optical coupler with a certain coupling coefficient and transmitted to the base station over single-mode fiber. The central carrier and one of the first-order sidebands are beaten to generate the mm-wave when they are detected by an optical receiver. Another first sideband is reused as carrier for uplink connection. The dispersion performance of the generated mm-wave is theoretically analyzed; one can see that the effect of dispersion and requirement of the optical power are reduced. The PIN-PD can avoid working in a high-DC saturation range which may distort the RF components and depress the responsibility of the detector. The stimulant results show that the system can reduce the effect of dispersion effectively, and immune the fading effect and the walking-off signals. It is suitable for a long distance transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.