Abstract
A hybrid fiber-radio access network architecture for simultaneous wireline and wireless transmissions of data-over-cable service interface specification (DOCSIS) signals is presented. An all-optical harmonic up-conversion technique using a dual-drive Mach-Zehnder modulator provides the downstream optical signal modulated not only at the intermediate frequency in the 600- to 900-MHz band for wireline transmission but also at the up-converted frequency in the 5.45- to 5.75-GHz band for wireless transmission. An InGaAsP/InGaAsP multiple-quantum-well asymmetric Fabry-Perot modulator/detector has been designed, fabricated, and packaged and has been employed in the base station (BS) as an optical/electrical transducer, simultaneously providing the functions of optical intensity modulation and photodetection. At the BS, the DOCSIS signals are recovered at the wireline and wireless frequencies for the respective feeding of a cable access network or a fixed wireless access network in a highly flexible approach. Full-duplex operation has been demonstrated for both access types in an indoor laboratory environment. In a subsequent small-scale field trial, real-life Internet traffic provided by a local community antenna television system operator has been transported over the present hybrid fiber-radio access network architecture, and simultaneous transmission of both DOCSIS and digital television signals has also been performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.