Abstract

Recent works have shown that the state-feedback decoupling of capacitor voltage allows for drastic bandwidth enlarging of current controllers for grid-forming converters in islanded microgrids. Furthermore, Smith predictor and lead compensation have been also proved as very effective implementations for compensating the controller delays. These features are key to fulfill demanding requirements in terms of voltage regulation in islanded applications. This work deepens in the discrete-time domain modeling and implementation issues of the above-mentioned techniques. A full discrete-time and sensitivity analyses reveal phenomena not properly modeled in previous works, which limits the performance: the presence of high-frequency oscillations due to discrete poles with negative real part. Subsequently, proper design countermeasures (i.e., limit bandwidth) are proposed. Discrete implementation of the voltage controller is also addressed, and design guidelines are provided. Experimental tests in accordance with the high demanding standards for uninterruptible power supply systems verify the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.