Abstract

Full-dimensional quantum dynamical calculations are carried out to study the mode specificity, bond selectivity, and isotopic branching ratio of the Cl + HOD reaction on an accurate global potential energy surface. Total reaction cross sections have been computed for several low-lying vibrational states of HOD. Our results confirm the experimental observed vibrationally promoted bond cleavage, in which the breaking of the OH(OD) bond is strongly enhanced by the OH(OD) excitation. These results are rationalized by the recently proposed sudden vector projection model. In addition, the OH/OD branching ratio as a function of energy is investigated and rationalized by a reorientation effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.