Abstract

Full-dimensional quantum calculations of the vibrational states of H5(+) have been performed on the accurate potential energy surface developed by Xie et al. [J. Chem. Phys. 122, 224307 (2005)]. The zero point energies of H5(+), H4D(+), D4H(+), and D5(+) and their ground-state geometries are presented and compared with earlier theoretical results. The first 10 low-lying excited states of H5(+) are assigned to the fundamental, overtone, and combination of the H2-H3(+) stretch, the shared proton hopping and the out-of-plane torsion. The ground-state torsional tunneling splitting, the fundamental of the photon hopping mode and the first overtone of the torsion mode are 87.3 cm(-1), 354.4 cm(-1), and 444.0 cm(-1), respectively. All of these values agree well with the diffusion Monte Carlo and multi-configuration time-dependent Hartree results where available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call