Abstract
We report full-dimensional, ab initio potential energy (PES) and dipole moment surfaces (DMS) for water. The PES is a sum of one-, two- and three-body terms. The three-body potential is a fit, reported here, to roughly 30,000 intrinsic three-body energies obtained with second-order Møller-Plesset perturbation theory (MP2) and using the aug-cc-pVTZ basis set (avtz). The one- and two-body potentials are from an ab initio water dimer potential [Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The predictive accuracy of the PES is demonstrated for the water trimer, tetramer, and hexamer by comparing the energies and harmonic frequencies obtained from the PES and new high level ab initio calculations at the respective global minima. The DMS is constructed from one- and two-body dipole moments, based on fits to MP2/avtz dipole moments. It is shown to be very accurate for the hexamer by comparison with direct calculations of the hexamer dipole. To illustrate the anharmonic character of the PES one-mode calculations of the 18 monomer fundamentals of the hexamer are reported in normal coordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.