Abstract
The complex of a methane molecule and a fluoride anion represents a 12-dimensional (12D), four-well vibrational problem with multiple large-amplitude motions, which has challenged the quantum dynamics community for years. The present work reports vibrational band origins and tunneling splittings obtained in a full-dimensional variational vibrational computation using the GENIUSH program and the Smolyak quadrature scheme. The converged 12D vibrational band origins and tunneling splittings confirm complementary aspects of the earlier full- and reduced-dimensionality studies: (1) the tunneling splittings are smaller than 0.02 cm-1; (2) a single-well treatment is not sufficient (except perhaps the zero-point vibration) due to a significant anharmonicity over the wells; and thus, (3) a full-dimensional treatment appears to be necessary. The present computations extend to a higher energy range than earlier work, show that the tunneling splittings increase upon vibrational excitation of the complex, and indicate non-negligible "heavy-atom" tunneling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.