Abstract

Due to the lack of sophisticated component libraries for microelectromechanical systems (MEMS), highly optimized MEMS sensors are currently designed using a polygon-driven design flow. The advantage of this design flow is its accurate mechanical simulation, but it lacks a method for an efficient and accurate electrostatic analysis of parasitic effects of MEMS. In order to close this gap in the polygon-driven design flow, we present a customized electrostatic analysis flow for such MEMS devices. Our flow features a 2.5D fabrication-process simulation, which simulates the three typical MEMS fabrication steps (namely deposition of materials including topography, deep reactive-ion etching, and the release etch by vapor-phase etching) very fast and on an acceptable abstraction level. Our new 2.5D fabrication-process simulation can be combined with commercial field-solvers such as they are commonly used in the design of integrated circuits. The new process simulation enables a faster but nevertheless satisfactory analysis of the electrostatic parasitic effects, and hence simplifies the electrical optimization of MEMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.