Abstract

The study of the full curve damage process of polypropylene fiber reinforced mortars under medium strain rate (10–6 s–1–10–4 s–1) could enrich the understanding of the dynamic damage characteristics of polypropylene fiber reinforced structures. In order to explore the physical mechanisms of polypropylene fiber in the dynamic damage process of the polypropylene fiber reinforced mortars. The real-time dynamic acoustic emission (AE) technology was applied to monitor the damage process of polypropylene fiber reinforced mortars at different strain rates. The analysis of characteristics of AE wavelet energy spectrum and the average AE peak frequency of polypropylene fiber reinforced mortars with different polypropylene fiber content at different strain rates were conducted. The results show that with the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increases first and then decreases and the average AE peak frequency increases gradually. The AE wavelet energy spectrum in ca8 frequency band and the average AE peak frequency decreases gradually with the increase of the strain rate, but them increases first and then decreases with the increase of polypropylene fiber content. The above AE characteristics could provide important information for the identification of dynamic damage mechanism of polypropylene reinforced fiber mortars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call