Abstract
With greater power density, a hybrid power source that combines supercapacitors and batteries has a wide range of applications in pulse-operated power systems. In this paper, a supercapacitor/battery semi-active hybrid energy storage system (HESS) with a full current-type control strategy is presented. The studied HESS is composed of batteries, supercapacitors, and a bidirectional buck–boost converter. The converter is controlled such that supercapacitors supply load power pulses, and batteries provide the power in steady state. To realize the fast compensation of the supercapacitors to the load power pulses, a power distribution module based on hysteresis control theory is designed in the control system. Moreover, the control strategy does not require the model parameters of the converter and supercapacitors, so the control system is simplified. A complete configuration scheme and cost analysis of the proposed HESS are also presented. Obtained results show that the proposed supercapacitor/battery semi-active HESS has good performance in terms of dynamic response, weight, and energy utilization coefficient (EUC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.