Abstract

Quantum chemical methods originally developed for studying atomic and molecular systems can be applied successfully to the study of few-body electron-hole systems in semiconductor nanostructures. A new computational approach is presented for studying the energetics and dynamics of interacting electrons and holes in a semiconductor quantum dot. The electron-hole system is described by a two-band effective mass Hamiltonian. The Hamiltonian is diagonalized in a configuration state function basis constructed as antisymmetric products of the electron one-particle functions and antisymmetric products of the hole one-particle functions. The symmetry adapted basis set used for the expansion of the one-particle functions consists of anisotropic Gaussian basis functions. The transition probability between electron-hole states consisting of different numbers of carrier pairs is calculated at the full configuration interaction level. The results show that the electron-hole correlation affects the radiative recombination rates significantly. A method for calculating the phonon relaxation rates between excited states and the ground state of quantum dots is described. The phonon relaxation calculations show that the relaxation rate is strongly dependent on the energy level spacings between the states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call