Abstract

AbstractThe electronic structure of the benzyl radical in its ground state has been computed using a model Hamiltonian due to Pariser–Parr with full configuration interaction as well as with different truncated configurational sets built on SCF open‐shell orbitals. The correlation energy corresponding to this model was found to be equal to –0.929722 eV. With the singly excited configurations only 18% of this energy is taken into account. By extending the basis to include the doubly excited configurations one can account for 94% of the correlation energy. An analysis of the accuracy of the proton hyperfine splitting calculation caused by inaccurate computation of the wave function is given. If only singly and even doubly excited configurations are taken into account one cannot hope to obtain splittings with an accuracy of more than 0.5 g. Inclusion of triply excited configurations lowers this error by one order. In addition, the use of the simple McConnell relation may lead to an error in splitting calculations of no less than 1.5 g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.