Abstract
Accurate drag estimation is critical in making computational design studies. Drag may be estimated thousands of times during a multidisciplinary design optimization, and computational fluid dynamics is not yet possible in these studies. The current model has been developed as part of an air-vehicle conceptual-design multidisciplinary design optimization framework. Its use for subsonic and transonic aircraft configurations is presented and validated. We present our parametric geometry definition, followed by the drag model description. The drag model includes induced, friction, wave, and interference drag. The model is compared with subsonic and transonic isolated wings, and a wing/body configuration used previously in drag prediction workshops. The agreement between the predictions of the drag model and test data is good, but lessens at high lift coefficients and high transonic Mach numbers. In some cases the accuracy of this drag estimation method exceeds much more elaborate analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.