Abstract

We present a simple implementation of calculation of spin current profiles using a partial differential equation platform. By solving multiple scalar potentials, spin injection, spin/charge inter-conversion, and thermal spin injection phenomena can be well reproduced numerically. As a demonstration, we show spin current generation and detection in a composite of ferromagnetic, spin conducting, and spin-Hall-metallic materials. Furthermore, we present a model extended to three-dimensionally polarized spin current and describe the matrix for spin/charge current inter-conversion in a conductive ferromagnet, which allows for numerical reproduction of anomalous and planar Hall effects. It is found that the planar Hall voltage is in part generated by spin Hall conductivities, though its magnitude is orders smaller than that induced by the anisotropic magnetoresistance. Our method will contribute to further development of effective and feasible simulations of spin-current-mediated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.