Abstract
We present Full-BAPose, a novel bottom-up approach for full body pose estimation that achieves state-of-the-art results without relying on external people detectors. The Full-BAPose method addresses the broader task of full body pose estimation including hands, feet, and facial landmarks. Our deep learning architecture is end-to-end trainable based on an encoder-decoder configuration with HRNet backbone and multi-scale representations using a disentangled waterfall atrous spatial pooling module. The disentangled waterfall module leverages the efficiency of progressive filtering, while maintaining multi-scale fields-of-view comparable to spatial pyramid configurations. Additionally, it combines multi-scale features obtained from the waterfall flow with the person-detection capability of the disentangled adaptive regression and incorporates adaptive convolutions to infer keypoints more precisely in crowded scenes. Full-BAPose achieves state-of-the art performance on the challenging CrowdPose and COCO-WholeBody datasets, with AP of 72.2% and 68.4%, respectively, based on 133 keypoints. Our results demonstrate that Full-BAPose is efficient and robust when operating under a variety conditions, including multiple people, changes in scale, and occlusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.