Abstract

AbstractThe output characteristics, cutoff frequency, breakdown voltage and the transconductance of wurtzite and zincblende phase GaN MESFETs have been calculated using a self-consistent, full band Monte Carlo simulation. It is found that the calculated breakdown voltage for the wurtzite device is considerably higher than that calculated for a comparable GaN zincblende phase device. The zincblende device is calculated to have a higher transconductance and cutoff frequency than the wurtzite device. The higher breakdown voltage of the wurtzite phase device is attributed to the higher density of electronic states for this phase compared to the zincblende phase. The higher cutoff frequency and transconductance of the zincblende phase GaN device is attributed to more appreciable electron velocity overshoot for this phase compared to that for the wurtzite phase. The maximum cutoff frequency and transconductance of a 0.1 μm gate-length zincblende GaN MESFET are calculated to be 220GHz and 210 mS/mm, respectively. The corresponding quantities for the wurtzite GaN device are calculated to be 160GHz and 158 mS/mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.