Abstract

A homo-junction In0.53Ga0.47As tunneling diode is investigated using full-band, atomistic quantum transport approach based on a tight-binding model (TB) and the non-equilibrium Green’s function formalism. Band gap narrowing (BGN) is included in TB by altering its parameters using the Jain-Roulston model [S. C. Jain and D. J. Roulston, Solid-State Electron. 34, 453 (1991)]. BGN is found to be critical in the determination of the current peak and the second turn-on in the forward bias region. Empirical excess current that mimics additional recombination paths must be added to the calculation to model the diode behavior in the valley current region. Overall, the presented model reproduces experimental data well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.