Abstract

A fully automated combination of solid-phase microextraction and on-fiber derivatization coupled with gas chromatography-mass spectrometry was developed to determine 17 chlorophenols in aqueous samples. Optimal parameters for the automated process, such as fiber coating (polyacrylate), derivatization reagent (N,O-bis(trimethylsilyl) trifluoroacetamide), extraction time (60 min), derivatization time (5 min), incubation temperature (35°C), sample pH (3), and ionic strength (300 g L(-1) of NaCl), as well as desorption time (5 min) and desorption temperature (270°C) were established. The whole procedure took only 90 min and was performed automatically. The shortcomings of silylation derivatives, like incompleteness and instability, were overcome by using solid-phase microextraction on-fiber silylation in this study. The results from both pure water and river water samples showed that the method had a good linearity (r(2) = 0.9993-1.0000), ranging from 0.01 to 100 μg L(-1). The related standard deviations were between 3.6 and 10.0%. The limits of detections and qualifications ranged from 0.03 to 3.11 ng L(-1) and 0.09 to 10.4 ng L(-1) for the CPs, respectively. The proposed method is superior to traditional solid phase extraction procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.