Abstract

Prions are unusual protein assemblies that propagate their conformationally-encoded information in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggregates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Register-β-Sheet (PIRIBS) [2] or β-solenoid conformations [3]. Similar folding models have also been proposed for PrPSc, although none of these have been confirmed experimentally. Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evidence that PrPSc is structured as a 4-rung β-solenoid (4RβS) [4, 5]. Here, we combined different experimental data and computational techniques to build the first physically-plausible, atomic resolution model of mouse PrPSc, based on the 4RβS architecture. The stability of this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to be comparable to that of the prion forming domain of Het-s, a naturally-occurring β-solenoid. Importantly, the 4RβS arrangement allowed the first simulation of the sequence of events underlying PrPC conversion into PrPSc. This study provides the most updated, experimentally-driven and physically-coherent model of PrPSc, together with an unprecedented reconstruction of the mechanism underlying the self-catalytic propagation of prions.

Highlights

  • Prion diseases are infectious neurodegenerative disorders characterized by an invariably lethal outcome caused by a proteinaceous infectious agent named “prion” [1]

  • Recent cryo-electron microscopy (cryo-EM) data obtained using infectious, anchorless PrPSc fibrils [4] provided strong evidence indicating that PrPSc fibrils consist of two independent protofilaments, and of the existence of 2 nm structural units repeating along each protofilament axis, suggestive of a 4-rung β-solenoid (4RβS)

  • This would be fully compatible with the LβH model, and much less so with the Parallel In-Register Beta-Sheet (PIRIBS) model, which posits that PrPSc fibrils are not made up by two protofilaments, but rather, by a single wider filament that features two subdomains or lobes separated by a cleft (Goveman et al, 2014)

Read more

Summary

Introduction

Prion diseases are infectious neurodegenerative disorders characterized by an invariably lethal outcome caused by a proteinaceous infectious agent named “prion” [1]. Recent cryo-EM data obtained using infectious, anchorless PrPSc fibrils [4] provided strong evidence indicating that PrPSc fibrils consist of two independent protofilaments, and of the existence of 2 nm structural units repeating along each protofilament axis, suggestive of a 4-rung β-solenoid (4RβS) This would be fully compatible with the LβH model, and much less so with the PIRIBS model, which posits that PrPSc fibrils are not made up by two protofilaments, but rather, by a single wider filament that features two subdomains or lobes separated by a cleft (Goveman et al, 2014). The PIRIBS model fails to accommodate glycosylated residues in PrPSc, which would result in the introduction of excessive steric clashes [11] It should be pointed out, that the low resolution of available experimental data still does not allow to definitively discard any option (a detailed comparison of PIRIBS and solenoid-based models can be found in [12]). While consistent with the mentioned experimental constraints, the proposed LβH model is incoherent with a recent reevaluation of previous FTIR data suggesting that PrPSc does not contain α-helices [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.