Abstract

This work presents a comparative study between a new approach for robust speed estimation in induction motor sensorless control, using a reduced order extended Kalman filter (EKF), and the one performed by the full order EKF. The new EKF algorithm uses a reduced order state-space model that is discretized in a particular and innovative way. In this case only the rotor flux components are estimated, besides the rotor speed, while the full order EKF also estimates stator current components. This new approach strongly reduces the execution time and simplifies the tuning of covariance matrices. The performance of speed estimation using both EKF techniques is compared with respect to computation effort, tuning of the algorithms, speed range including low speeds, load torque conditions and robustness relatively to motor parameter sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.