Abstract
Proton inventory studies of the thrombin-catalyzed fibrinogen activation to fibrinopeptide A are most consistent with a two-proton bridge forming at the transition state probably between Ser195 OgammaH and His57 Nepsilon2 and His57 Ndelta1 and Asp102 COObeta- at the active site, with fractionation factors 0.66 +/- 0.03 under enzyme saturation with substrate and 0.64 +/- 0.03 at fibrinogen concentration at 0.2 Km, at pH 8.0, pD 8.6, and 25.0 +/- 0.1 degrees C. Strongly inverse solvent isotope effects (SIEs) result from inverse lag times and maximal slopes of blood clotting plots, which are also anion and cation dependent. The blood clot is much coarser in D2O, as indicated in clotting curves with 3-9 times shorter lag time and steeper slopes with respect to H2O. The finer the particles, the weaker the H-bonds interlocking the fibrin mesh and/or in water structure around fibrin. Proton inventories of inverse lag times and maximal slopes of blood clotting curves in buffers containing Na+ and Cl- ions give the best fit to an exponential dependence on deuterium content in the buffer and give fractionation factors 5.6 +/- 0.5 and 7.8 +/- 0.6 at pH 8.0 and 25.0 +/- 0.1 degrees C. The thrombin-catalyzed activation of protein C (PC) to APC is associated with inverse kinetic SIEs (KSIEs) of 0.75 +/- 0.09 and 1.02 +/- 0.06 in 0.3 M NaCl and 0.3 M choline chloride, respectively, at substrate concentrations = 0.2 Km. In comparison, thrombin-catalyzed hydrolysis of chromogenic substrates gives greater KSIEs (Enyedy, E. I.; Kovach. I. M J. Am. Chem. Soc. 2004, 126, 6017-6024) and more complex proton inventories than the ones reported here for the first time for natural substrates. The present study illuminates differences in the character of the rate-determining transition state for the initial phase of the two physiological reactions catalyzed by thrombin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.