Abstract

Developing high-voltage cathode materials is critical for sodium-ion batteries to boost energy density. NASICON (Na super-ionic conductor)-structured Nax MnM(PO4 )3 materials (M represents transition metal) have drawn increasing attention due to their features of robust crystal framework, low cost, as well as high voltage based on Mn4+ /Mn3+ and Mn3+ /Mn2+ redox couples. However, full activation of Mn4+ /Mn3+ redox couple within NASICON framework is still a great challenge. Herein, a novel NASICON-type Na4 MnCr(PO4 )3 material with highly reversible Mn4+ /Mn3+ redox reaction is discovered. It proceeds a two-step reaction with voltage platforms centered at 4.15 and 3.52 V versus Na+ /Na, delivering a capacity of 108.4 mA h g-1 . The Na4 MnCr(PO4 )3 cathode also exhibits long durability over 500 cycles and impressive rate capability up to 10 C. The galvanostatic intermittent titration technique (GITT) test shows fast Na diffusivity which is further verified by density functional theory calculations. The high electrochemical activity derives from the 3D robust framework structure, fast kinetics, and pseudocapacitive contribution. The sodium storage mechanism of the Na4 MnCr(PO4 )3 cathode is deeply studied by ex situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS), revealing that both solid-solution and two-phase reactions are involved in the Na+ ions extraction/insertion process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.