Abstract
This investigation delves into the pressing need for curriculum reform in Indonesia, specifically examining the "Merdeka Belajar: Kampus Merdeka (MBKM)" policy, with a focus on the Near Peer Teaching (NPT) model. Previous studies have flagged NPT's shortcomings, attributing them to inconsistent tutor feedback rooted in relational challenges. Despite positive anecdotal evidence of student transformation through NPT, such accounts often lack objectivity. This research strategically surveys K-12 vocational schools in Kuningan, honing in on challenges in Mathematics to inform responsive teaching strategies. Noteworthy is the persistence of selecting peer tutors based on final exam scores, a practice upheld despite the initial randomness in NPT tutor selection, creating hurdles in gauging effectiveness. Paradoxically, empirical data suggests that third-semester students make better tutors, yet the fixation on final exam scores persists. To propel the NPT model forward, the study advocates for clustering tutors based on scientific intelligence, integrating the innovative application of machine learning algorithm K-Means. This comprehensive approach melds quantitative data science with qualitative Deep Interviews, aiming to refine and optimize the identification of suitable peer tutors. The crux of the findings revolves around the imperative to refine the selection process for peer tutors, considering factors such as interest, motivation, and academic achievement, to significantly amplify the efficacy of NPT within the learning environment..
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.