Abstract

Hungaria asteroids, whose orbits occupy the region in element space between 1.78<a<2.03AU, e<0.19, 12°<i<31°, are a possible source of Near-Earth Asteroids (NEAs). Named after (434) Hungaria these asteroids are relatively small, since the largest member of the group has a diameter of just about 11km. They are mainly perturbed by Jupiter and Mars, possibly becoming Mars-crossers and, later, they may even cross the orbits of Earth and Venus. In this paper we analyze the close encounters and possible impacts of escaped Hungarias with the terrestrial planets. Out of about 8000 known Hungarias we selected 200 objects which are on the edge of the group. We integrated their orbits over 100 million years in a simplified model of the planetary system (Mars to Saturn) subject only to gravitational forces. We picked out a sample of 11 objects (each with 50 clones) with large variations in semi-major axis and restarted the numerical integration in a gravitational model including the planets from Venus to Saturn. Due to close encounters, some of them achieve high inclinations and eccentricities which, in turn, lead to relatively high velocity impacts on Venus, Earth, and Mars. We statistically analyze all close encounters and impacts with the terrestrial planets and determine the encounter and impact velocities of these fictitious Hungarias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.