Abstract
In recent years, frequent forest fires have seriously threatened the earth’s ecosystem and people’s lives and safety. With the development of machine vision and unmanned aerial vehicle (UAVs) technology, UAV monitoring combined with machine vision has become an important development trend in forest fire monitoring. In the early stages, fire shows the characteristics of a small fire target and obvious smoke. However, the presence of fog interference in the forest will reduce the accuracy of fire point location and smoke identification. Therefore, an anchor-free target detection algorithm called FuF-Det based on an encoder–decoder structure is proposed to accurately detect early fire points obscured by fog. The residual efficient channel attention block (RECAB) is designed as a decoder unit to improve the problem of the loss of fire point characteristics under fog caused by upsampling. Moreover, the attention-based adaptive fusion residual module (AAFRM) is used to self-enhance the encoder features, so that the features retain more fire point location information. Finally, coordinate attention (CA) is introduced to the detection head to make the image features correspond to the position information, and improve the accuracy of the algorithm to locate the fire point. The experimental results show that compared with eight mainstream target detection algorithms, FuF-Det has higher average precision and recall as an early forest fire detection method in fog and provides a new solution for the application of machine vision to early forest fire detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.