Abstract

The fuel-optimal control problem arising in noncoplanar orbital transfer employing aeroassist technology is addressed. The mission involves the transfer from high Earth orbit to low Earth orbit with plane change. The complete maneuver consists of a deorbit impulse to inject a vehicle from a circular orbit to an elliptic orbit for atmospheric entry, a boost impulse at the exit from the atmosphere for the vehicle to attain a desired orbital altitude, and a reorbit impulse to circularize the path of the vehicle. In order to minimize the total fuel consumption, a performance index is chosen as the sum of the deorbit, boost, and reorbit impulses. The application of optimization principles leads to a nonlinear, two-point, boundary value problem, which is solved by a multiple shooting method. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.