Abstract

In light of current global issues concerning the depletion of non-renewable energy sources and degradation of our atmosphere, there has been an increased interest in the topic of nuclear fusion. Fusion, a process that was discovered in the early 20th century, began development internationally in the 1930s, and continues to be studied today. As the nature of the atomic nucleus was being explored, it was hypothesized early on that fusion was the process behind the power generated by the sun and stars. This quickly led to the idea of harnessing that power, but it seemed as if the problems would not be overcome. Within the past 20 years, the intensity of fusion research has increased as a result of the growing sustainable energy problem the Earth faces. There are a number of practical engineering problems that implementing functional fusion reactors face. Two of the most daunting have been creating strong enough magnetic fields and maintaining the necessary conditions of temperature, pressure, density for a long enough period of time to generate sufficient amounts of energy to be competitive with current power plants. In addition, politically fusion has often been conflated with an anti-nuclear (bomb and fission) movement. Due to the frequent comparisons between the two, there may be stigma against the construction of fusion reactors. As the climate and energy crisis have changed public thinking, however, it is possible that the public opinion has changed. There are a number of important positive aspects to exploiting nuclear fusion. It does not produce greenhouse gasses. It has an abundant supply of initial fuel (which are isotopes of hydrogen). It does not generate dangerous radioactive waste. And unlike wind and solar power it is not an intermittent source of energy and can be integrated more easily into the existing power distribution grid.One aspect of this work is to assess what people know and are interested in learning about nuclear fusion. Another is to introduce and explain current efforts to develop fusion reactors on a global scale. A survey has been developed to assess attitudes towards nuclear fusion. In particular, the survey is being distributed to high school students as they will be the important future decision makers about sources of energy. We also looked at some global data of the distribution and development of energy sources, which show that developed countries are not necessarily changing their power sources, but new sources may be more likely to be implemented in other parts of the world. The effort for a sustainable fusion reaction remains very much an international effort. This poster serves to illustrate the background and general process of modern nuclear fusion reactors, as well as dissect the benefits (both numerical and psychological) and roadblocks our planet faces to integrate fusion into our energy grid. From these factors we determine that the benefits to fusion are far beyond the problems that serve as walls towards its implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call