Abstract
Abstract. Exploration is a fundamental problem in robotics that requires robots to navigate through unknown environments to autonomously gather information about their surroundings while executing collision-free paths. In this paper, we propose a method for producing smooth paths during the exploration process in indoor environments using UAVs to improve battery efficiency and enhance the quality of pose estimation. The developed framework is built by merging two approaches that represent the state of the art in the field of autonomous exploration with UAVs. The overall exploration logic is given by GLocal, a paper that introduces an hybrid, i.e. both sampling-based and frontier-based, framework that is able to cope with the issue of odometry drift when exploring indoor environments due to the absence of absolute localization, e.g. through GNSS. The second paper is FUEL, which introduces a frontier-based exploration methodology which computes the drone’s path as an optimized non-uniform B-Spline. The framework described in this paper borrows the optimized B-Spline trajectory generation from FUEL and implements it in GLocal. The presented system is evaluated in two different simulated environments, which show the pros and the cons of such method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.