Abstract
The effect of fuel unsaturation on NOx and PAH formation in spray flames is investigated at diesel engine conditions. The directed relation graph methodology is used to develop a reduced mechanism starting from the detailed CRECK mechanism (http://creckmodeling.chem.polimi.it/index.php/current-version-kinetic-mechanisms/low-and-high-temperature-complete-mechanism). The reduced mechanism and spray models are validated against the shock tube ignition data and high-fidelity, non-reacting and reacting spray data from the Engine Combustion Network (ECN). 3-D simulations are performed using the CONVERGE software to examine the structure and emission characteristics of n-heptane and 1-heptene spray flames in a constant-volume combustion vessel. Results indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone (RPZ) near the flame stabilization region and a non-premixed reaction zone (NPZ) further downstream. Most of NOx is formed via thermal NO route in the NPZ, while PAH species are mainly formed in the RPZ. A small amount of NO is also formed via prompt route in the RPZ, and via N2O intermediate route in the region outside NPZ, and via NNH intermediate route in the region between RPZ and NPZ. The presence of a double bond leads to higher flame temperature and thus higher NO in 1-heptene flame than that in n-heptane flame. It also leads to the increased formation of PAH species, implying increased soot emission in 1-heptene flame than that in n-heptane flame. Reaction path analysis indicate that the increased formation of PAH species can be attributed to the significantly higher amounts of 1,3-butadiene and allene formed due to β scission reactions resulting from the presence of double bond in 1-heptene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.