Abstract

Homogeneous charge compression ignition (HCCI) has been considered as an ideal combustion mode for compression ignition (CI) engines due to its superb thermal efficiency and low emissions of nitrogen oxides (NOx) and particulate matter. However, a challenge that limits practical applications of HCCI is the lack of control over the combustion rate. Fuel stratification and partially premixed combustion (PPC) have considerably improved the control over the heat release profile with modulations of the ratio between premixed fuel and directly injected fuel, as well as injection timing for ignition initiation. It leverages the advantages of both conventional direct injection compression ignition and HCCI. In this study, neat n-butanol is employed to generate the fuel stratification and PPC in a single cylinder CI engine. A fuel such as n-butanol can provide additional benefits of even lower emissions and can potentially lead to a reduced carbon footprint and improved energy security if produced appropriately from biomass sources. Intake port fuel injection (PFI) of neat n-butanol is used for the delivery of the premixed fuel, while the direct injection (DI) of neat n-butanol is applied to generate the fuel stratification. Effects of PFI-DI fuel ratio, DI timing, and intake pressure on the combustion are studied in detail. Different conditions are identified at which clean and efficient combustion can be achieved at a baseline load of 6 bar IMEP. An extended load of 14 bar IMEP is demonstrated using stratified combustion with combustion phasing control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call