Abstract

Fuel-saving-oriented collaborative driving is a highly promising yet challenging endeavor that requires satisfying the driver’s operational intentions while surpassing the driver’s fuel-saving performance. In light of this challenge, the paper introduces an innovative collaborative driving strategy tailored to the objective of fuel conservation in the context of commercial vehicles. An enhancement to this strategy involves the development of a network prediction model for vehicle speed, leveraging insights from driver style recognition. Employing the predicted speed as a reference, a model-predictive-control-based optimal controller is designed to track the reference while optimizing fuel consumption. Furthermore, a straightforward yet effective collaborative rule is proposed to ensure alignment with the driver’s intention. Subsequently, the proposed control scheme is validated through simulation and real-world driving data, revealing that the human–machine cooperative driving controller saves 4% more fuel than human drivers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call