Abstract

Inland navigation is of increasing economic and ecological interest, however its contribution to environmental quality is hardly known. We hypothesized that i) inland navigation emits considerable amounts of soot-Black Carbon (BC) as a product of incomplete combustion of diesel fuel, which is then deposited on soils along river valleys, that ii) improvement of fuel quality by sulfur reduction in 2011 decreased BC inputs to soil, and that iii) this provides a tracer for the spatial impact of inland navigation emissions. The spatial and temporal patterns of soil BC deposits from inland navigation were investigated yearly (2010–2013) working within transects perpendicular to the rivers Rhine, Moselle and Ahr, Germany (the Ahr Valley is free of shipping and served as a reference). In rural areas at inland waterways navigation likely represented the dominant BC emitter. Topsoils (0–10 cm depth) were sampled in vineyards. Their BC content and composition was determined via oxidation of bulk soil organic matter to benzene polycarboxylic acids (BPCAs). The highly trafficked Rhine Valley yielded only little more BC (64.7 ± 12 g BC kg−1 soil organic carbon (SOC) compared to 51.7 ± 9 at the Moselle, and 53.6 ± 6 at the reference Ahr Valley). At both inland waterways soil BC increased towards the river, following the simulated dispersal of ship-derived BC using a Lagrangian model. In the course of ship fuel regulation, soil BC deposits at the Rhine and Moselle waterways decreased significantly from 70.2 ± 3.2 to 47.9 ± 1.1 and 57.6 ± 1.3 to 41.7 ± 0.9 g BC kg−1 SOC within 3 years. Even more pronounced was the change in BC composition, i.e., the ratio of pentacarboxylated to mellitic acid increased from 0.75 to 1.3 (Rhine) and 1 to 1.4 (Moselle) during this time span. From this we calculated that ∼30% less BC was deposited by inland navigation likely due to reduced BC emissions after sulfur regulation in ship diesel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.