Abstract

The performance of a scramjet engine relies heavily on the combustion characteristics of fuel. This work aims to propose a concept of controlling the self-starting characteristics and propulsion performance of a scramjet via fuel reactivity modification. The fuel reactivity was modified by adjusting the activation energy of each elementary reaction. The thermodynamic analysis was then systemically performed to evaluate the effects of fuel reactivity on the lowest flight Mach number required for self-starting and the specific thrust. The results indicate that the lowest flight Mach number for self-starting of a hydrogen-fueled scramjet reduces from 6.2 to 5.1 when the activation energy is decreased by 50%. Under a given flight condition, fuel reactivity has a remarkable influence on the characteristic ignition length, which affects the specific thrust, especially at low flight Mach numbers. It is demonstrated that there exists an optimal reaction rate to achieve the maximum specific thrust, rather than increase the reaction rate infinitely. The optimal reaction rate relates to the supersonic flow condition, the exothermic heat of fuel, and the wall friction. The results obtained in this investigation provide a theoretical basis for the design of high-reactivity supersonic combustion fuel and further research of advanced scramjet engine operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.