Abstract

Ground coffee residue (GCR) was torrified under nitrogen or carbon dioxide atmosphere. Effect of torrefaction parameters on fuel properties of biochar was investigated by varying process temperature, residence time, and sweeping gas flow rate over the range of 200–300 °C, 30–60 min, and 50–250 mL/min, respectively. Severe torrefaction (300 °C) short residence time (30 min) under low carbon dioxide flow rate (50 mL/min) was determined as a promising condition to produce biochar as solid fuel. H/C and O/C atomic ratios, HHV, and energy yield of the obtained biochar were 0.94 and 0.14, 31.12 MJ/kg, and 48.04%, respectively, which were comparable with the properties of sub-bituminous coal. The calculated decarbonization (DC), dehydrogenation (DH), and deoxygenation (DO) indicated that torrefaction led to major losses of oxygen and hydrogen. The analysis of thermal decomposition properties and surface chemical functional groups revealed that temperature substantially affected biochar properties, while the effect of sweeping gas was only marginal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.