Abstract
For the $N$ -impulse transfer between two earth orbits, this paper introduces $N - 1$ intermediate orbits to describe the orbit transfer scheme. The eccentricity vector of the intermediate orbits and the true anomalies corresponding to the impulsive points are chosen as the optimization variables. Based on the patched conic theory, candidate solution can be analytically derived, constraints are removed from the optimization model, and the original problem is converted to a parameter optimization problem. The only difficulty lies in the initialization because the number of optimization variables increases linearly with $N$ , which can be very large. This is settled by a hybrid optimization algorithm that comprises two searching methods. The problem is solved first by an improved particle swarm optimization method and, then, by an adaptive conjugate gradient method. The proposed method is adaptive to problems with any finite $N$ and can calculate the optimal $N$ in any transfer scenarios. The simulation validates the proposed method with some well-known cases and demonstrates its adaptation to $N$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.