Abstract

Since 2011 the JET tokamak has been operated with a metal ITER-like wall (JET-ILW) including castellated beryllium limiters and lamellae-type bulk tungsten tiles in the divertor. This has allowed for a large scale test of castellated plasma-facing components (PFC). Procedures for sectioning the limiters into single blocks of castellation have been developed. This facilitated morphology studies of morphology of surfaces inside the grooves for limiters after experimental campaigns 2011–2012 and 2013–2014. The deposition in the 0.4–0.5 mm wide grooves of the castellation is ‘shallow’. It reaches 1–2 mm into the 12 mm deep gap. Deuterium concentrations are small (mostly below 1 × 1018 cm−2). The estimated total amount of deuterium in all the castellated limiters does not exceed the inventory of the plasma-facing surfaces (PFS) of the limiters. There are only traces of Ni, Cr and Fe deposited in the castellation gaps. The same applies to the carbon content. Also low deposition of D, Be and C has been measured on the sides of the bulk tungsten lamellae pieces. Modelling clearly reflects: (a) a sharp decrease in the measured deposition profiles and(b) an increase in deposition with the gap width. Both experimental and modelling data give a strong indication and information to ITER that narrow gaps in the castellated PFC are essential. X-ray diffraction on PFS has clearly shown two distinct composition patterns: Be with an admixture of Be–W intermetallic compounds (e.g. Be22W) in the deposition zone, whilst only pure Be has been detected in the erosion zone. The lack of compound formation in the erosion zone indicates that no distinct changes in the thermo-mechanical properties of the Be PFC might be expected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call