Abstract
Engine tests were conducted to investigate the efficiency and the peak pressure rise rate performance of different fuel injection strategies for the direct injection of neat n-butanol in a compression ignition engine. Three different strategies were tested: a single-shot injection; a pilot injection; a post-injection. A single-shot injection timing sweep revealed that early injections had the highest indicated efficiency while late injections reduced the peak pressure rise rate at the cost of a slightly reduced thermal efficiency. Delayed single-shot injections also had increased emissions of nitrogen oxides, total hydrocarbon and carbon monoxide. Addition of a pilot injection had a negative effect on the peak pressure rise rate. Because of the low cetane number of butanol and the relatively lean and well-premixed air–fuel mixture, the pilot injection failed to autoignite and instead ignited simultaneously with the main injection. This resulted in slightly increased peak pressure rise rates and significantly increased unburned butanol hydrocarbon emissions. Conversely, the use of an early post-injection produced a noticeable engine power output and allowed the main injection to be shortened and the peak pressure rise rate to be substantially reduced. However, relatively early post-injections slightly reduced the indicated efficiency and increased the nitrogen oxide emissions and the carbon monoxide emissions compared with the single-shot injection strategy. These results recommended the use of a single-shot injection for low loads and medium loads owing to a superior thermal efficiency and suggested that the application of a post-injection may be more suited to high-load conditions because of the substantially reduced peak pressure rise rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.