Abstract
Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides ( NOX) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NOXemissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.