Abstract

The orbits of solar sails can be changed by adjusting the sail’s attitude through external control torques. The resulting momentum will be changed, either provided by a typical attitude control subsystem or by a propellantless device. This paper investigates the extra momentum input and fuel consumption for a typical attitude control subsystem. The minimum-time transfer trajectories are designed for two rendezvous missions using both indirect and direct methods, generating continuous and discrete attitude histories, respectively. The results show that the momentum variation is almost wholly due to the solar radiation pressure. The feasibility of using tip-mounted microthrusters for attitude control is evaluated. The results show that less than 0.1 kg of propellant are required for an interplanetary transfer mission when pulsed plasma thrusters with a specific impulse of 700 s and a thrust of 150 mN are mounted at the tip of a 20 m square solar sail. The fuel consumptions of two transfer missions indicate that a tip-mounted pulsed plasma thruster is a viable technique for the attitude control of a solar sail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.