Abstract A better understanding of fuel use and greenhouse gas (GHG) emissions resulting from Canadian oil sands (bitumen) extraction can help to meet the global carbon budget and design effective climate policies. To date, no studies have published actual fuel use data, analyzed drivers for the decline of emission intensities (EIs) from in situ oil sands extraction, and evaluated the effectiveness of the cap and trade system in Alberta that aims to control GHG emissions for the world's fourth largest oil production region. This study retrieved operating fuel use data from a public database for 18 in situ oil sands extraction schemes. From 2015 to 2019, the weighted average of fuel use was 0.23 103 m3/m3 undiluted bitumen. The weighted averages of fuel use for the schemes using Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS) were 0.20 103 m3 fuel/m3 of undiluted bitumen and 0.34 103 m3 fuel/m3 of undiluted bitumen, respectively. The average EIs for SAGD ranged from 0.25 metric ton (t) CO2e/m3 to 0.98 t CO2e/m3, and the average EIs for CSS ranged from 0.61 t CO2e/m3 to 1.18 t CO2e/m3. In addition, the study pointed out that production ramping up and maturity of reservoirs contributed to the decline in EIs. The study concluded that the current Alberta cap and trade system is not effective to control GHG emissions from in situ oil sands extraction. Some operations were rewarded for emission credits because of production increases, rather than actual emission reductions. An industry-wide benchmark (cap) should be considered to encourage competition. An absolute emission cap should be imposed to prevent facilities from simply increasing production to drive down EI values.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call