Abstract

The choice of agro waste for the production of briquettes for domestic and industrial cottage utilization depends on the residues’ physical and fuel characteristics. This study investigate the physical and fuel characteristics for both the residues and blends of rice hull, groundnut shell and corncob. The residues were subjected to size reduction process and variance analysis was used to establish the influence of each sample blends. Different samples of briquettes were produced by blending rice hull (R), groundnut shell (G) and corncob(C) with different ratios of R:G:C respectively using cassava starch as a binder. The residue’ dimensions and densifications of the sample briquettes were determined using standard methods.The results revealed the following ranges of values; For the compressed residues, density (0.075 - 0.099Kg/m3), volume (0.001 - 0.002m3), height (1.0357 - 1.0343m). For the relaxed residues, density (0.049 - 0.210Kg/m3), volume (0.0001 -0.0002m3), height (1.0357 - 1.0343m). The residual density of rice hull, groundnut shell and corncob are 104, 105, and 103 (Kg/m3) respectively. The densification; compressed density (461.22 - 627.24 Kg/m3), relaxed density (285.47 - 393.63 Kg/m3), density ratio (0.56 - 0.66), relaxation ratio (1.52 - 1.79), and compaction ratio (1.46 to 2.01). Blend formulations affected the combustion characteristics of the briquettes, with low moisture briquettes possessing higher calorific values. The briquette formulation containing ratio 50:20:30 of rice hull: groundnut shell: corncob respectively had more positive attributes of biomass fuel such as lower relaxation ratio and high compaction ratio than the control and other formulated briquettes in this study. Generally, significant (p<0.05) differences existed between the samples in almost all the parameters.Keywords: Briquettes, Corn comb, Densification, Fuel Characterization, Groundnut shell, Rice hull.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.