Abstract
AbstractExperimental results on the performance of a Ballard 5 kW proton exchange membrane fuel cell stack for different oxygen contents in the oxidant are presented. A description of the experimental setup is given. Polarization, power, and efficiency curves as a function of the current density, for different oxygen concentrations are presented. This detailed characterization of the fuel cell stack behavior is required in order to evaluate the effects of oxygen enrichment on the net power output of the stack. This investigation is done in the framework of a project on stand‐alone power generation systems using renewable energy sources, and based on hydrogen production and storage. An electrolyzer, powered by the excess electrical energy from renewable energy sources, produces hydrogen. The stored hydrogen could then be used to feed an energy conversion device, such as a fuel cell stack, which acts as a secondary power source in periods of high demand. Therefore, a second objective is to evaluate the possibility of using the oxygen produced by the electrolyzer for the enrichment. Other oxygen enrichment techniques such as membrane gas separation and pressure swing adsorption are also discussed. Net available power and system efficiency are used as comparison factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.