Abstract

The lifetime and cost are two bottlenecks in the widespread use of fuel cells. Increasing the lifetime of the fuel cell can also counteract the cost justification bottleneck. However, this depends on the method of extending the life of the fuel cell. The durability of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) can be improved using a management system. This management system must control the operating condition of cells or cell groups in such a way that the electrochemical and fluidic instabilities can be avoided to improve the lifetime of a stack. Developing this Fuel Cell Management System (FCMS) is challenging due to the coupling between cells inside a stack. In this paper, an FCMS is proposed. It can detect the instability of cell groups and change their reference power based on the detected instabilities. Since a mathematical model has a high ability to describe the phenomena occurring in a fuel cell, this paper uses a model to describe its operating conditions. The reference power of the cell groups can be changed using a developed power electronics structure. The last piece of the FCMS puzzle is to develop a management strategy. This strategy is developed in this paper. Eventually, the proposed system is evaluated experimentally. The experimental results validate the effectiveness of the proposed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.