Abstract
This paper presents a three-dimensional (3-D) computational fluid dynamics (CFD) study of a motored cooperative fuel research (CFR) engine at research octane number (RON) relevant condition. The boundary conditions for 3-D simulations were generated with a one-dimensional GT-Power model. For the first time in literature, a carburetor was added to a virtual CFR engine model with 3-D CFD. Therefore, the proposed setup can simulate the fuel and thermal stratifications inside the engine cylinder with realistic detail. The transient simulations in this work were performed within the Reynolds-averaged Navier-Stokes (RANS) framework with a Realizable k-ε turbulence model. Major conclusions from the present work are: (1) The in-cylinder flow of the CFR engine is swirl-dominated due to the existence of the intake valve shroud. (2) There is a significant amount of liquid droplets entering the cylinder during the intake stroke. The maximum instantaneous amount of liquid for 50% PRF 87 (containing 87% iso-octane and 13% n-heptane (v/v)) and 50% ethanol mixture is indicated to be around 26% of total injected fuel mass. (3) The heat of vaporization (HoV) of the fuel is responsible for creating both temperature and charge stratification inside the cylinder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.