Abstract

We previously reported that knockout mice for α1,6-fucosyltransferase (Fut8), which catalyzes the biosynthesis of core-fucose in N-glycans, develop emphysema and that Fut8 heterozygous knockout mice are more sensitive to cigarette smoke-induced emphysema than wild-type mice. Moreover, a lower FUT8 activity was found to be associated with a faster decline in lung function among chronic obstructive pulmonary disease (COPD) patients. These results led us to hypothesize that core-fucosylation levels in a glycoprotein could be used as a biomarker for COPD. We focused on a lung-specific glycoprotein, surfactant protein D (SP-D), which plays a role in immune responses and is present in the distal airways, alveoli, and blood circulation. The results of a glycomic analysis reported herein demonstrate the presence of a core-fucose in an N-glycan on enriched SP-D from pooled human sera. We developed an antibody–lectin enzyme immunoassay (EIA) for assessing fucosylation (core-fucose and α1,3/4 fucose) in COPD patients. The results indicate that fucosylation levels in serum SP-D are significantly higher in COPD patients than in non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings suggest that increased fucosylation levels in serum SP-D are associated with the development of COPD. Biological significanceIt has been proposed that serum SP-D concentrations are predictive of COPD pathogenesis, but distinguishing between COPD patients and healthy individuals to establish a clear cut-off value is difficult because smoking status highly affects circulating SP-D levels. Herein, we focused on N-glycosylation in SP-D and examined whether or not N-glycosylation patterns in SP-D are associated with the pathogenesis of COPD. We performed an N-glycomic analysis of human serum SP-D and the results show that a core-fucose is present in its N-glycan. We also found that the N-glycosylation in serum SP-D was indeed altered in COPD, that is, fucosylation levels including core-fucosylation are significantly increased in COPD patients compared with non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings shed new light on the discovery and/or development of a useful biomarker based on glycosylation changes for diagnosing COPD.This article is part of a Special Issue entitled: HUPO 2014.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call