Abstract

Fucoidan, a polysaccharide extracted from brown seaweeds, reduces tumor cell proliferation. In this study, we demonstrate that fucoidan reduces tumor size in LLC1-xenograft male C57BL/6 mice. Moreover, we found that LLC1-bearing mice continuously fed fucoidan showed greater antitumor activity than mice with discontinuous feeding. Fucoidan inhibited the in vitro growth of lung cancer cells. Transforming growth factor β (TGFβ) receptors (TGFRs) play important roles in the regulation of proliferation and progression, and high TGFRI expression in lung cancer specimens is associated with a worse prognosis. Herein, using lung cancer cells, we found that fucoidan effectively reduces TGFRI and TGFRII protein levels in vivo and in vitro. Moreover, fucoidan reduces TGFR downstream signaling events, including those in Smad2/3 and non-Smad pathways: Akt, Erk1/2, and FAK phosphorylation. Furthermore, fucoidan suppresses lung cancer cell mobility upon TGFβ stimulation. To elucidate how fucoidan decreases TGFR proteins in lung cancer cells, we found that fucoidan enhances the ubiquitination proteasome pathway (UPP)-mediated degradation of TGFRs in A549 and CL1-5 cells. Mechanistically, fucoidan promotes Smurf2 and Smad7 to conjugate TGFRs, resulting in TGF degradation; however, Smurf2-shRNA abolishes fucoidan-enhanced UPP-mediated TGFR degradation. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan, namely decreasing tumor growth by modulating the TGFR/Smad7/Smurf2-dependent axis, leading to TGFR protein degradation and inhibition of lung cancer cell progression in vitro and in vivo. Our current findings indicate that fucoidan is a potential therapeutic agent or dietary supplementation for lung cancer, acting via the Smurf2-dependent ubiquitin degradation of TGFβ receptors.

Highlights

  • Fucoidan is an aggregate name for algal fucoseenriched sulfated polysaccharides extracted from the extracellular matrix of brown seaweeds

  • We demonstrate that fucoidan inhibits the viability of human non-small cell lung cancer (NSCLC) cells and mouse lung cancer cells, reduces lung tumorigenesis, and inhibits TGFRI/II protein expression in LLC1-xenograft mice orally fed with fucoidan

  • These results show that fucoidan suppresses tumorigenesis and reduces transforming growth factor β receptor (TGFR) protein expression in an LLC1-bearing mouse model in vivo

Read more

Summary

Introduction

Fucoidan is an aggregate name for algal fucoseenriched sulfated polysaccharides extracted from the extracellular matrix of brown seaweeds. We recently reported that fucoidan inhibits breast cancer cell growth in vitro and in vivo via the involvement of ubiquitin proteasome pathway (UPP)-mediated transforming growth factor β receptor (TGFR) degradation [4]. Fucoidan induces apoptosis by the activation of caspase 3 and downregulation of Erk-mediated pathways [5] as well as by the activation of caspases 9 and 8, which inhibit the growth of A549 (human lung adenocarcinoma) cells [6] and MCF-7 (human breast cancer) cells [7], respectively. Fucoidan inhibits invasion and angiogenesis by human fibrosarcoma cells via repression of the activities of matrix metalloproteinases 2 and 9 [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call