Abstract
Since the permeation of the inflammatory cytokines into hydrogel scaffolds has been shown to cause dysfunction of encapsulated cells, appropriate design strategies to circumvent this are essential. In the present work, it was hypothesized that highly crosslinked PVA-fucoidan and PVA-carrageenan hydrogels can control permeation of the trefoil-shaped inflammatory cytokine IL-1β while allowing the permeation of the globular protein albumin. PVA, fucoidan, and carrageenans were functionalized with methacrylate groups and the functionalized polymers were co-crosslinked by UV photopolymerization. The resultant hydrogels were characterized physicochemically and the release of fucoidan and carrageenans was quantified by developing a colorimetric assay, which was validated by XPS analysis. The permeability characteristics of the hydrogels were evaluated using bovine serum albumin (BSA), IgG, and IL-1β. The results demonstrated an increase in hydrogel swelling through the incorporation of the polysaccharides with minimal overall mass loss. The release studies showed hydrogel stability, where the formulations exhibited ~43% retention of fucoidan and ~60–80% retention of carrageenans consistently up to 7 days. The permeation data revealed very low permeation of IgG and IL-1β through the hydrogels, with <1% permeation after 24 h, while allowing >6% permeation of BSA. These data indicate that such hydrogels can be used as the basis for cytokine-protective implantable devices for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.