Abstract

The post-translational modification and aggregation of alpha-synuclein are one of the major causes of Parkinson's disease (PD) regulation. In that, the phosphorylation and nitration of synuclein elevate the aggregation, while O-GlcNacylation prevents the aggregation of synuclein. The inhibition of synuclein aggregation directs the development of PD therapy. The endowed O-GlcNacylation of synuclein could be a promising strategy to inhibit synucleinopathy. Therefore, the neuroprotective chitosan-based FTY720 nanoformulation, PP2A (Protein phosphatase 2) activator has been employed to evaluate the PP2A role in the O-GlcNacylation of synuclein in an in vivo PD model. The neuroprotective effect of our nanoformulation is attributed to the upregulation of tyrosine hydroxylase (TH), the PD therapeutic target, with behavioral improvement in animals against rotenone-induced PD deficits. The neuroprotective molecular insights revealed the camouflaged role of PP2A by endowing the OGT activity that induces O-GlcNacylation of synuclein in the reduction of synucleinopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.