Abstract

The GTPase-dependent polymerization/depolymerization dynamics of FtsZ regulate bacterial cell division in vivo. Deinococcus radiodurans is better known for its extraordinary radioresistance and therefore, the characterization of FtsZ of this bacterium (FtsZDr) would be required to understand the mechanisms underlying regulation of cell division in response to DNA damage. Recombinant FtsZDr bound to GTP and showed GTPase activity. It produced bundles of protofilaments in the presence of either GTP or Mg2+ ions. But the formation of the higher size ordered structures required both GTP and Mg2+in vitro. It showed polymerization/depolymerization dynamics as a function of GTP and Mg2+. Interestingly, ATP interacted with FtsZDr and stimulated its GTPase activity by ∼2-fold possibly by increasing both substrate affinity and rate of reaction. FtsZDr-GFP expressing in D. radiodurans produced typical Z ring perpendicular to the plane of first cell division. These results suggested that FtsZDr is a GTPase in vitro and produces typical Z ring at the mid cell position in D. radiodurans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.