Abstract

Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.

Highlights

  • IntroductionThe causative agent of cholera, harbors two nonhomologous circular chromosomes [1]

  • Vibrio cholerae, the causative agent of cholera, harbors two nonhomologous circular chromosomes [1]

  • These results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes

Read more

Summary

Introduction

The causative agent of cholera, harbors two nonhomologous circular chromosomes [1]. An important difference between bacteria and eukaryotes is that specific machineries appear to exist for the coordinated maintenance of each chromosome of a given bacterium, whereas eukaryotic cells possess a single global system for all chromosomes [4,5,6,7,8,9,10,11,12]. The two V. cholerae chromosomes harbor different partition systems [4,7] and initiation of their replication is governed by different mechanisms [6,8,9]. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle [14], further raising questions on the mechanisms ensuring the synchronous management of chromosome I and II

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.